List of phenyltropanes

Such list of Wake Forest University (WF).


2-Carboxymethyl esters

Certain phenyltropanes can be used as a smoking cessation aid.

Selected Phenyltropanes
Short Name X DA 5HT NE
WIN 35,065-2 (CPT) H 23 1962 920
WIN 35,428 (CFT) F 14 156 85
RTI-29[1] NH2 9.8 5110 151
RTI-31 Cl 1.12 44.5 37
RTI-32 Me 1.71 240 60
RTI-51 Br 1.69 10.6 37.4
Iometopane (RTI-55) I 1.26 4.21 36
RTI-83 Et 55 28.4 4030
RTI-11w 15 7.1 28,000
RTI-298[2] –≡–Ph 3.7 46.8 347
RTI-436 –CH=CHPh 3.09 335 (31) 1960 (1181)
RTI-430 –C≡C(CH2)2Ph 6.28 2128 (198) 1470 (886)

(3,4-Disubstituted phenyl)-tropanes

Compound X Y 2 Position config 8 DA 5-HT NE
RTI-318 β-naphthyl CO2Me β,β NMe 0.5 0.81 20
Dichloropane (RTI-111) Cl Cl CO2Me β,β NMe 0.79 3.13 18.0
RTI-88 [recheck] NH2 I CO2Me β,β NMe 1.35 1329 320
RTI-97 NH2 Br CO2Me β,β NMe 3.91 181 282
RTI-112 Cl Me CO2Me β,β NMe 0.82 10.5 36.2
RTI-96 F Me CO2Me β,β NMe 2.95 76 520
RTI-295 Et I CO2Me β,β NMe 21.3 2.96 1349
RTI-353 (EINT) Et I CO2Me β,β NH 331 0.69 148
RTI-279 Me I CO2Me β,β NH 5.98 1.06 74.3
RTI-280 Me I CO2Me β,β NMe 3.12 6.81 484

Carboxyaryl

Compound X 2 Position config 8 DA 5-HT NE
RTI-122 I -CO2Ph β,β NMe 1.50 184 3,791
RTI-113 Cl -CO2Ph β,β NMe 1.98 2,336 2,955
RTI-277 NO2 -CO2Ph β,β NMe 5.94 2,910 5,695
RTI-120 [recheck] Me -CO2Ph β,β NMe 3.26 24,471 5,833
RTI-116 Cl -CO2(p-C6H4I) β,β NMe 33 1,227 968
RTI-203 Cl CO2(m-C6H4Me) β,β NMe 9.37 2153 2744
RTI-204 Cl -CO2(o-C6H4Me) β,β NMe 3.91 3,772 4,783
RTI-205 Me -CO2(m-C6H4Me) β,β NMe 8.19 5,237 2,137
RTI-206 Cl -CO2(p-C6H4Me) β,β NMe 27.4 1,203 1,278

Carboxyalkyl

Code X 2 Position config 8 DA 5-HT NE
RTI-77 Cl CH2C2(3-iodo-p-anilino) β,β NMe 2.51 2247
RTI-121 I -CO2Pri β,β NMe 0.43 66.8 285
RTI-153 I -CO2Pri β,β NH 1.06 3.59 132
RTI-191 I -CO2Prcyc β,β NMe 0.61 15.5 102
RTI-114 Cl -CO2Pri β,β NMe 1.40 1,404 778
RTI-278 NO2 -CO2Pri β,β NMe 8.14 2,147 4,095
RTI-190 Cl -CO2Prcyc β,β NMe 0.96 168 235
RTI-193 Me -CO2Prcyc β,β NMe 1.68 1,066 644
RTI-117 Me -CO2Pri β,β NMe 6.45 6,090 1,926
RTI-150 Me -CO2Bucyc β,β NMe 3.74 2,020 4,738
RTI-127 Me -CO2C(H)Et2 β,β NMe 19 4500 3444
RTI-338 ethyl -CO2C2Ph β,β NMe 1104 7.41 3366

Use of a cyclopropyl ester appears to enable better MAT retention than does the choice of isopropyl ester.

Use of a cycBu resulted in greater DAT selectivity than did the cycPr homologue.

Amides

U.S. Patent 5,736,123 RTI-183 and RTI-218 have the same structure??

Code X 2 Position config 8 DA NE 5-HT
RTI-106 Cl CON(H)Me β,β NMe 12.4 1511 1312
RTI-118 Cl CONH2 β,β NMe 11.5 4267 1621
RTI-222 Me morpholinyl β,β NMe 11.7 >100K
RTI-129 Cl CONMe2 β,β NMe 1.38 942 1079
RTI-146 Cl CONHCH2OH β,β NMe 2.05 144 98
RTI-147 Cl CON(CH2)4 β,β NMe 1.38 3,949 12,394
RTI-156 Cl CON(CH2)5 β,β NMe 6.61 5832 3468
RTI-170 Cl CON(H)CH2C≡CH β,β NMe 16.5 1839 4827
RTI-172 Cl CON(H)NH2 β,β NMe 44.1 3914 3815
RTI-174 Cl CONHCOMe β,β NMe 158 >43K >125K
RTI-182 Cl CONHCH2COPh β,β NMe 7.79 1722 827
RTI-183 Cl CON(OMe)Me β,β NMe 0.85 549 724
RTI-186 Me CON(OMe)Me β,β NMe 2.55 442 (266) 3400 (309)
RTI-198 Cl CON(CH2)3 β,β NMe 6.57 990 813
RTI-196 Cl CONHOMe β,β NMe 10.7 9907 >43K
RTI-201 Cl CONHNHCOPh β,β NMe 91.8 >20K >48K
RTI-208 Cl CONO(CH2)3 β,β NMe 1.47 998 2470
RTI-214 Cl CON(-CH2CH2-)2O β,β NMe 2.90 8545 >88K
RTI-215 Cl CONEt2 β,β NMe 5.48 ? 9432
RTI-217 Cl CONH(m-C6H4OH) β,β NMe 4.78 >30K >16K
RTI-218 Cl CON(Me)OMe β,β NMe 1.19 520 1911
RTI-226 Cl CONMePh β,β NMe 45.0 ? 24K
RTI-227 I CONO(CH2)3 β,β NMe 0.75 446 230
RTI-229[3] I CON(CH2)4 β,β NMe 0.37 991 1,728

Acyl

# X Y 2 Position config 8 DA 5-HT NE
WF-23 β-naphthyl C(O)Et β,β NMe 0.115 0.394 No data
WF-31 -Pri H C.O.Et β,β NMe 615 54.5 No data
WF-11 Me H -C.O.Et β,β NMe 8.2 131 No data
WF-25 H H -C.O.Et β,β NMe 48.3 1005 No data
WF-33 6-MeoBN C(O)Et α,β NMe 0.13 2.24 No data

Ester reduction

Note: p-fluorophenyl is weaker than the others. RTI-145 is not peroxy, it is a methylcarbonate.

Code X 2 Position config 8 DA 5-HT NE
RTI-100 F -CH2OH β,β NMe 47 4741 no data
RTI-101 I -CH2OH β,β NMe 2.2 26 no data
RTI-99 Br -CH2OH β,β NMe 1.49 51 no data
RTI-93 Cl -CH2OH β,β NMe 1.53 204 43.8
RTI-105 Cl -CH2OAc β,β NMe 1.60 143 127
RTI-123 Cl -CH2OBz β,β NMe 1.78 3.53 393
RTI-145 Cl -CH2OCO2Me β,β NMe 9.60 2.93 1.48

Misc.

Code X 2 Position config 8 DA 5-HT NE
RTI-102 I CO2H β,β NMe 474 1928 43,400
RTI-103 Br CO2H β,β NMe 278 3070 17,400
RTI-104 F CO2H β,β NMe 2744 >100K >100K
RTI-108 Cl -CH2Cl β,β NMe 2.64 98 129.8
RTI-241 Me -CH2CO2Me β,β NMe 1.02 619 124
RTI-139 Cl -CH3 β,β NMe 1.67 85 57
RTI-161 Cl -C≡N β,β NMe 13.1 1887 2516
RTI-230 Cl H3C–C=CH2 β,β NMe 1.28 57 141
RTI-240 Cl -CHMe2 β,β NMe 1.38 38.4 84.5
RTI-145 Cl -CH2OCO2Me β,β NMe 9.60 2,932 1,478
RTI-158 Me -C≡N β,β NMe 57 5095 1624
RTI-131 Me -CH2NH2 β,β NMe 10.5 855 120
RTI-164 Me -CH2NHMe β,β NMe 13.6 2246 280
RTI-132 Me -CH2NMe2 β,β NMe 3.48 206 137
RTI-239 Me -CHMe2 β,β NMe 0.61 114 35.6
RTI-338 Et -CO2CH2Ph β,β NMe 1104 7.41 3366
RTI-348 H -Ph β,β NMe 28.2 >34,000 2670

F&B series

The compound of the present invention are useful pesticides.[4]

Code X 2 Position config DA NE 5-HT
RTI-224 Me F1c β,β 4.49 155.6
RTI-233 Me F2 β,β 4.38 516 73.6
RTI-235 Me F3 d β,β 1.75 402 72.4
RTI-236 Me B1 d β,β 1.63 86.8 138
RTI-237 Me B2 d β,β 7.27 258 363
RTI-244 Me B3 d β,β 15.6 1809 33.7
RTI-245 Cl F4 c β,β 77.3
RTI-246 Me F4 c β,β 50.3 3000
RTI-248 Cl F6 c β,β 9.73 4674 6.96
RTI-249 Cl F1 c β,β 8.32 5023 81.6
RTI-266 Me F2 β,β 4.80 836 842
RTI-267 Me F7 wrong β,β 2.52 324 455
RTI-268 Me F7 right β,β 3.89 1014 382
RTI-269 Me F8 β,β 5.55 788 986

Biotin

β,α Stereochemistry

Compound X 2 Group config 8 DA 5-HT NE
RTI-140 H CO2Me β,α NMe 101 5,701 2,076
U.S. Patent 6,358,492 I CO2Me β,α NMe 2.86 64.9 52.4
RTI-549 Br CO2Me β,α NMe
RTI-319 U.S. Patent 7,011,813 BN CO2Me β,α NMe 1.1 11.4 70.2
RTI-286 U.S. Patent 7,011,813 F CO2Me β,α NMe 21 5062 1231
U.S. Patent 7,291,737 F CH2O(3'4'-MD-phenyl) β,α NH 3.96 5.62 14.4
RTI-287 Et CO2Me β,α NMe 327 1687 17,819

α,β Stereochemistry

Compound X 2 Group config 8 DA 5-HT NE
Brasofensine Cl2 methyl aldoxime α,β NMe
Tesofensine Cl2 ethoxymethyl α,β NMe 65 11 1.7
NS-2359 (GSK-372,475) Cl2 Methoxymethyl α,β NH

Heterocycles

These heterocycles are sometimes referred to as the "bioisosteric equivalent" of the simpler esters from which they are derived. A potential disadvantage of leaving the ββ-ester unreacted is that in addition to being hydrolyzable, it can also epimerize[5] to the energetically more favorable trans configuration. This can also happen to cocaine also.

3-Substituted-isoxazol-5-yl

N-methylphenyltropanes with 1R β,β stereochemistry.
Code X R DA NE 5HT
RTI-165 Cl 3-methylisoxazol-5-yl 0.59 181 572
RTI-171 Me 3-methylisoxazol-5-yl 0.93 254 3818
RTI-180 I 3-methylisoxazol-5-yl 0.73 67.9 36.4
RTI-177 Cl 3-phenylisoxazol-5-yl 1.28 504 2418
RTI-176 Me 3-phenylisoxazol-5-yl 1.58 398 5110
RTI-181 I 3-phenylisoxazol-5-yl 2.57 868 100
RTI-184 H methyl 43.3 6208
RTI-185 H Ph 285 >12K
RTI-334 Cl 3-ethylisoxazol-5-yl 0.50 120 3086
RTI-335 Cl isopropyl 1.19 954 2318
RTI-336 Cl 3-(4-methylphenyl)isoxazol-5-yl 4.09 1714 5741
RTI-337 Cl 3-t-butyl-isoxazol-5-yl 7.31 6321 37K
RTI-345 Cl p-chlorophenyl 6.42 5290 >76K
RTI-346 Cl p-anisyl 1.57 762 5880
RTI-347 Cl p-fluorophenyl 1.86 918 7257
RTI-354 Me 3-ethylisoxazol-5-yl 1.62 299 6400
RTI-366 Me R = isopropyl 4.5 2523 (1550) 42,900 (3900)
RTI-371 Me p-chlorophenyl 8.74 >100K (60,200) >100K (9090)
RTI-386 Me p-anisyl 3.93 756 (450) 4027 (380)
RTI-387 Me p-fluorophenyl 6.45 917 (546) >100K (9400)

3-Substituted-1,2,4-oxadiazole

Heterocyclic (N-methyl)phenyltropanes with 1R stereochemistry.
Code X R DA NE 5HT
ααRTI-87 H 3-methyl-1,2,4-oxadiazole 204 36K 30K
βαRTI-119 H 3-methyl-1,2,4-oxadiazole 167 7K 41K
αβRTI-124 H 3-methyl-1,2,4-oxadiazole 1028 71K 33K
RTI-125 Cl 3-methyl-1,2,4-oxadiazole 4.05 363 2584
ββRTI-126[4] H 3-methyl-1,2,4-oxadiazole 100 7876 3824
RTI-130 Cl 3-phenyl-1,2,4-oxadiazole 1.62 245 195
RTI-141 Cl 3-(p-anisyl)-1,2,4-oxadiazole 1.81 835 357
RTI-143 Cl 3-(p-chlorophenyl)-1,2,4-oxadiazole 4.1 4069 404
RTI-144 Cl 3-(p-bromophenyl)-1,2,4-oxadiazole 3.44 1825 106
βRTI-151 Me 3-phenyl-1,2,4-oxadiazole 2.33 60 1074
αRTI-152 Me 3-phenyl-1,2,4-oxadiazole 494 1995
RTI-154 Cl 3-isopropyl-1,2,4-oxadiazole 6 135 3460
RTI-155 Cl 3-cyclopropyl-1,2,4-oxadiazole 3.41 177 4362
N-methylphenyltropanes with 1R β,β stereochemistry.
Code X 2 Group DA NE 5HT
RTI-157 Me tetrazole 1557 >37K >43K
RTI-163 Cl tetrazole 911 5456
RTI-178 Me 5-phenyl-oxazol-2-yl 35.4 677 1699
RTI-188 Cl 5-phenyl-1,3,4-oxadiazol-2-yl 12.6 930 3304
RTI-189 Cl 5-phenyl-oxazol-2-yl 19.7 496 1116
RTI-194 Me 5-methyl-1,3,4-oxadiazol-2-yl 4.45 253 4885
RTI-195 Me 5-phenyl-1,3,4-oxadiazol-2-yl 47.5 1310 >22,000
RTI-199 Me 5-phenyl-1,3,4-thiadiazol-2-yl 35.9 >24,000 >51,000
RTI-200 Cl 5-phenyl-1,3,4-thiadiazol-2-yl 15.3 4142 >18,000
RTI-202 Cl benzothiazol-2-yl 1.37 403 1119
RTI-219 Cl 5-phenylthiazol-2-yl 5.71 8516 10,342
RTI-262 Cl
RTI-370 Me 3-(p-cresyl)isoxazol-5-yl 8.74 6980 >100K
RTI-371 Cl 3-(p-chlorophenyl)isoxazol-5-yl 13 >100K >100K
RTI-436 Me -CH=CHPh[6] 3.09 1960 (1181) 335 (31)
RTI-470 Cl o-Cl-benzothiazol-2-yl 0.094 1590 (994) 1080 (98)
RTI-451 Me benzothiazol-2-yl 1.53 476 (287) 7120 (647)

N-alkyl

Compound X 2 Group config 8 DAT SERT NET
FP-β-CPPIT Cl 3'-phenylisoxazol-5'-yl β,β NCH2CH2CH2F
FE-β-CPPIT Cl (3'-phenylisoxazol-5'-yl) β,β NCH2CH2F
Altropane F CO2Me β,β NCH2CH=CHF
RTI-310 U.S. Patent 5,736,123 I CO2Me β,β N-Prn 1.17
RTI-311 I CO2Me β,β NCH2CH=CH2 1.79
RTI-312 U.S. Patent 5,736,123 I CO2Me β,β NBun 0.76
RTI-313 U.S. Patent 5,736,123 I CO2Me β,β NCH2CH2CH2F 1.67
Ioflupane ¹²³I CO2Me β,β NCH2CH2CH2F
RTI-251 Cl CO2Me β,β NCH2CO2Et 1.93 10.1 114
RTI-252 Cl CO2Me β,β NCH2CH2CO2Et 2.56 35.2 125
RTI-242 Cl β,β (bridged) -C(O)CH(CO2Me)CH2N 7.67 227 510

Bi- and tri-cyclic U.S. Patent 6,150,376

N-replaced (S,O,C)

Compound X 2 Group config 8 DA 5-HT NE
Tropoxane Cl,Cl CO2Me (racemic) β,β O 3.3 6.5 No data

Irreversible

Irreversible (phenylisothiocyanate) binding ligand ()[7] RTI-76:[8] 4-isothiocyanatophenyl (1R,2S,3S,5S)-3-(4-chlorophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate. Also known as: 3beta-(p-chlorophenyl)tropan-2beta-carboxylic acid p-isothiocyanatophenylmethyl ester.

Note the contrast to the phenylisothiocyanate covalent binding site location as compared to the one on p-Isococ, a non-phenyltropane cocaine analogue.

Nortropanes (N-demethylated)

NS2359 (GSK-372,475)

It is well established that electrostatic potential around the para position tends to improve MAT binding. This is believed to also be the case for the meta position, although it is less studied. N-demethylation dramatically potentiates NET and SERT affinity, but the effects of this on DAT binding are insignificant.[9] Of course, this is not always the case. For an interesting exception to this trend, see the Taxil document. There is ample evidence suggesting that N-demethylation of alkaloids occurs naturally in vivo via a biological enzyme. The fact that hydrolysis of the ester leads to inactive metabolites means that this is still the main mode of deactivation for analogues that have an easily metabolised 2-ester substituent. The attached table provides good illustration of the effect of this chemical transformation on MAT binding affinities. N.B. In the case of both nocaine and pethidine, N-demethyl compounds are more toxic and have a decreased seizure threshold.[10]

Selected ββ Nortropanes
Code X DA 5HT NE
RTI-142 F 4.39 68.6 18.8
RTI-98 I 0.69 0.36 11.0
RTI-110 Cl 0.62 4.13 5.45
RTI-173 Et 49.9 8.13 122
N-demethylating various β,β p-HC-phenyltropanes
X [3H]Paroxetine [3H]WIN 35,428 [3H]Nisoxetine
Ethyl 28.4 → 8.13 55 → 49.9 4,029 → 122
vinyl 9.5 → 2.25 1.24 → 1.73 78 → 14.9
Ethynyl 4.4 → 1.59 1.2 → 1.24 83.2 → 21.8
1-Propyl 70.4 → 26 68.5 → 212 3,920 → 532
t-propenyl 11.4 → 1.3 5.29 → 28.6 1,590 → 54
c-propenyl 7.09 → 1.15 15 → 31.6 2,800 → 147
Allyl 28.4 → 6.2 32.8 → 56.5 2,480 → 89.7
1-Propynyl 15.7 → 3.16 2.37 → 6.11 820 → 116
i-Propyl 191 → 15.1 597 → 310 75,000 → ?
2-Propenyl 3.13 → 0.6 14.4 → 23 1,330? → 144
N-Demethylating phenyltropanes to find a NRI
Isomer 4' 3' NE DA 5HT
β,β Me H 60 → 7.2 1.7 → 0.84 240 → 135
β,β F H 835 → 18.8 15.7 → 4.4 760 → 68.6
β,β Cl H 37 → 5.45 1.12 → 0.62 45 → 4.13
β,α Me H 270 → 9 10.2 → 33.6 4250 → 500
β,α F H 1200 → 9.8 21 → 32.6 5060 → 92.4
β,α Cl H 60 → 5.41 2.4 → 3.1 998 → 53.3
β,α F Me 148 → 4.23 13.7 → 9.38 1161 → 69.8
β,α Me F 44.7 → 0.86 7.38 → 9 1150 → 97.4

"Interest in NET selective drugs continues as evidenced by the development of atomoxetine, manifaxine, and reboxetine as new NET selective compounds for treating ADHD and other CNS disorders such as depression" (FIC, et al. 2005).[11]

Thiophenyltropanes

Select annotations of above

Phenyltropanes can be grouped by "N substitution" "Stereochemistry" "2-substitution" & by the nature of the 3-phenyl group substituent X.
Often this has dramatic effects on selectivity, potency, and duration, also toxicity, since phenyltropanes are highly versatile. For more examples of interesting phenyltropanes, see some of the more recent patents, e.g. U.S. Patent 7,291,737.

Potency in vitro should not be confused with the actual dosage, as pharmacokinetic factors can have a dramatic influence on what proportion of an administered dose actually gets to the target binding sites in the brain, and so a drug that is very potent at binding to the target may nevertheless have only moderate potency in vivo. For example, RTI-336 requires a higher dosage than cocaine. Accordingly, the active dosage of RTI-386 is exceedingly poor despite the relatively high ex vivo DAT binding affinity.

Sister substances

Many molecular drug structures have exceedingly similar pharmarcology to phenyltropanes, yet by certain technicalities do not fit the phenyltropane moniker. These are namely classes of dopaminergic cocaine analogues that are in the piperidine class (a category that includes methylphenidate) or benztropine class (such as Difluoropine: which is extremely close to fitting the criteria of being a phenyltropane.) Whereas other potent DRIs are far removed from being in the phenyltropane structural family, such as Benocyclidine or Vanoxerine.

References

External links

  • U. S. Provisional Patent Application listing examples of compounds that are tropanes for prospective use in research
  • Article on cocaine analogue research
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.